Mila & DRAC
cheat sheet

.
getting help

- search in docs.mila.quebec
- search for specific strings (or error messages) on the Mila slack
- visit #mila-cluster and #compute-canada (for DRAC)
- visit specific tool channels such as #pytorch and #jax
- go to the IDT office hours (Tuesday 3PM-5PM)

by just walking into the IDT lab (room A.17) and saying hi
- open an IT support ticket by emailing it-support@mila.quebec
- contact DRAC support at support@tech.alliancecan.ca

milatools

Quick way to setup SSH to Mila cluster
pip install -U milatools; mila init

Open VSCode connected to an interactive session on compute node
mila code /path/work --alloc [salloc arguments]

Milatools can also connect directly to a DRAC cluster (e.g. cedar)
mila code /path/work --cluster=cedar --alloc
--account=def-bengioy [other salloc arguments]

Inside VSCode you can also open a remote SSH to mila-cputo
automatically create an interactive session to a CPU node (configured by
mila init). You can also ssh mila-cpu from a terminal.

Never run a program that takes more than a few seconds on a login

node. Do not edit files remotely with VSCode directly on login nodes.

modules

module avail

(NB: Many of those modules are outdated.)

Displays all the available modules
Loads <module>

module spider <module> Shows details about <module>
module load python/3.10 Load python 3.10 to use it

Allows Wandb and Comet on DRAC

module load <module>

module load httpproxy

Slurm commands

salloc --gres=gpu:l -c 2 --mem=12000
Get an interactive job with one GPU, 2 CPUs and 12000 MB RAM
sbatch
Start a batch job (same options as salloc)
sattach --pty <jobid>.0
Re-attach a dropped interactive job
sinfo
Status of all nodes
sinfo -0 gres:27,nodelist, features -tidle,mix,alloc
List GPU type and FEATURES that you can request
savail
List available gpu (Mila only)
partition-stats [-Vv]
Similar functionality to savail (DRAC only)
scancel <jobid>
Cancel a job
squeue -u $USER
Summary status of all YOUR active jobs
squeue -j <jobid>
Summary status of a specific job
squeue -0 jobid,name,username,partition,state, timeused,nodelist,gres, tres
Status of all jobs including requested resources
(see the SLURM squeue doc for all output options)
scontrol show job <jobid>
Detailed status of a running job
sacct -j <job_id> -o NodeList
Get the node where a finished job ran
sacct -u $USER -S <start time> -E <stop_time>
Find info about old jobs
sacct -oJobID,JobName,User,Partition,Node,State
List of current and recent jobs

Remember that every map is a simplification of reality. PREPARED ON
This is a cheat sheet for Mila students using Slurm, 2024-04-01
not a full tutorial, and also not a Linux/Git/PyTorch guide. BEST BEFORE

oYs

See docs.mila.quebec/Cheatsheet.html for pdf, 2025-04-01
along with errata. Anticipate one update per year.
The complete up-to-date documentation at docs.mila.quebec.

sbatch / salloc commands

-n, --ntasks=<number> Number of task in your script, usually =1

-c, —--cpus-per-task=<ncpus> Number of cores for each task

Time requested for your job

Memory requested for all your tasks

Select generic resources such as GPUs:
-—gres=gpu:GPU_MODEL

-t, —-time=<time>
—-mem=<size[units]>
—--gres=<list>

-p, --partition=<name> Partition for resource sharing (Mila cluster only)
—-account=<name> DRAC allocation for resources (DRAC only)
-x, —--exclude=<nodes> Exclude certain nodes from job submission

sbatch script example

#!/bin/bash

#SBATCH --ntasks=1 # Default 1 task, optional
#SBATCH --partition=unkillable # Ask for unkillable job
#SBATCH --cpus-per-task=2 # Ask for 2 CPUs

#SBATCH --gres=gpu:l # Ask for 1 GPU

#SBATCH --mem=10G # Ask for 10 GB of RAM
#SBATCH --time=3:00:00 # The job will run for 3 hours
#SBATCH -o /network/scratch/<u>/<username>/slurm-$%j.out

Load the required modules

module --quiet load anaconda/3

Load your environment

conda activate "<env_name>"

Copy your dataset on the compute node

cp /network/datasets/<dataset> $SLURM TMPDIR

Launch your job, tell it to save the model in $SLURM TMPDIR
and look for the dataset into $SLURM TMPDIR

python main.py --path $SLURM TMPDIR --data path $SLURM TMPDIR
Copy whatever you want to save on SSCRATCH

cp $SLURM TMPDIR/<to_save> /network/scratch/<u>/<username>/

multi-GPU, multi-node 1 node with 1GPU

#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4

#SBATCH --ntasks-per-node=1
#SBATCH --mem=16G

#SBATCH --time=00:15:00

2 nodes with 4 GPUs each

#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4

#SBATCH --ntasks-per-node=4
#SBATCH --nodes=2

#SBATCH --mem=16G

#SBATCH --time=00:15:00

See docs.mila.quebec/examples/
distributed/index.html for
minimalist standalone code.

1 node with 4 GPUs

#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4

#SBATCH --ntasks-per-node=4
#SBATCH --mem=16G

#SBATCH --time=00:15:00

If you have N parallel jobs that each require 1 GPU, don't try to schedule them in a multi-GPU
way. Submit many separate jobs, maybe use job arrays, or consider packing many
experiments in a single job with 1GPU.

checkpointing, profiling, scaling

Powerful GPUs cost approximately $1/h when amortized over their expected life.
If you use only one GPU for active development, it's acceptable to be inefficient.
Consider using a less powerful GPU or a “MIG” instance if possible.

Things change when you run large-scale experiments. You need to
- profile your code to make sure you properly use the GPUs allocated (i.e. “GPU Utilization”),
- use checkpoints properly to resume your experiments when they crash or get preempted.

Easy ways to measure “GPU Utilization” include Wandb, nvidia-smi and the DRAC “portail”.
See also docs.mila.quebec/examples/good_practices/checkpointing/index.html for an
example of proper checkpointing.

Research involves exploring and testing ideas that don’t necessarily work out in the end.
This is a good use of the cluster when done properly. Mila is a research institute.

Don't be the researcher who runs 200 jobs each running for 24h and using only 2% of a GPU.
They've just wasted $5000. Lack of proper checkpointing can lead to same levels of waste.
Avoid grid search for hyperparameter optimization. Better tools reduce unnecessary computation.

official docs

node and GPU monitoring

datasets already shared on cluster
dashboard for jobs (currently in beta)

The Mila cluster is available for all students supervised by a Mila core prof and for Mila employees.
Not MsPro students, nor students of non-core Mila profs. Exceptions exist.

GPU
Node Name Qty | N Model

GPU compute nodes

cn-a[001-011] 11 | 8x RTX8000
cn-b[001-005] 5 @ 8x V100
cn-c[001-040] 40 = 8x RTX8000
cn-g[001-029] 29 4x A100
cn-i001 1 4x A100
cn-j001 1 8x A6000
cn-k[001-004] 1 2x V100
DGX Systems

cn-d[001-002] 2 8x A100
cn-d[003-004] 2 8x A100
cn-e[002-003] 2 8x V100

CPU compute nodes
cn-fl001-004] 4 - -

cn-h[001-004] 4 = - -

48
32
48
80
80
48
16

40
80
32

40
40
64
64
64
64
16

128
128
40

32
64

384
384
384
1024
1024
1024
256

1024
2048
512

256
768

MIG (a fractional part of a powerful GPU)

al00l.2g.20gb
alool.2

al00l.3g.40gb
alool.3

al00l.4g.40gb
alool.4

A100 (20GB, 2/7 of compute)
sbatch --gres=gpu:al00l.2 -c=4 --mem=32G ...

A100 (40GB, 3/7 of compute)
sbatch --gres=gpu:al00l.3 -c=8 --mem=64G ...

A100 (40GB, 4/7 of compute)
sbatch --gres=gpu:al00l.4 -c=8 --mem=64G ...

Mem| CPU Mem Tmp
(GB)|Cores (GB) (TB)

48 available

24 available

SLURM optimal ratios partition name max resource usage max time note
features GPU:CPU:RAM .
u unkillable 6 CPUs, mem=32G,1GPU 2days
unkillable-cpu 2 CPUs, mem=16G 2 days CPU-only jobs
3.6 tuing48gb 1:5:48GB short-unkillable 24 CPUs, mem=128G, 4 GPUs 3 hours (!)
3.6 volta,nviink,32gb 1:5:48GB main 8 CPUs, mem=48G, 2 GPUs 5 dayS
3 . 4 0 CE) main-cpu 8 CPUs, mem=64G 5 days CPU-only jobs
long no limit of resources 7 days
7 ampere,nviink,80gb . - .
1:16:256GB long-cpu no limit of resources 7days CPU-only jobs
3.6 = ampere80gh 1:16:256GB . : .
Jobs on the Mila cluster are all preemptible, except for those in the
3.6 ampere48gb 1:8:128GB unkillable partitions. This means that they can be terminated and requeued
automatically to allow higher-priority jobs to run (based on partition preemption
3.6 vofaibgh 1:8:128GB order unkillable >main > long). There is a very limited number of jobs that
canrunin unkillable partitions.
Partitions are specified with the --partition flag (obsolete in late 2024).
14 ampere,nviink,dgx,40gb 1:16 :32GB
28 amperenvinkdgx80gb { - 16 : 64GB path storage/inodes = speed | backup? mounted
7 | waninkdx32gb | 1 - 5 - 16GB $HOME 100GB / 1M low yes all nodes
$SCRATCH 20TB / infty high no all nodes
$SLURM_TMPDIR = highest no cn-*
10 | rome 0:1:8GB /network/projects varies medium no all nodes
7 milan 0:1:12GB /network/datasets read-only high no all nodes
/network/weights read-only high no all nodes
$ARCHIVE 500GB low no login-*
Use disk-quota to see your current usage of storage (SHOME and $SCRATCH).
48 available

Use savalil to list the GPUs available. Slurmnatively, go to dashboard.server.mila.quebec.

MIG instances should never be used for multi-GPU training. It is slow and absurd
compared to using a single full GPU. For up-to-date tips to avoid hitting a MIG node in your
multi-GPU training, refer to either docs.mila.quebec or the #mila-cluster Slack channel.
MIG instances have no graphics APIs (OpenGL/Vulkan).

DRAC (Digital Research Alliance of Canada, formely known as Compute Canada) offers access to compute clusters to all researchers in Canada. Any prof with an account on
DRAC can add (“sponsor”) whoever they want on their “default” allocation, but they will usually add their own students. Additionally, all students supervised by a Mila core
prof and all Mila employees can be added to a “mega allocation” under Yoshua Bengio’s name. See https://docs.mila.quebec/Extra_compute.html#account-creation.

DRAC uses a concept of “Reference GPU Unit” (RGU) to measure allocated GPUs in a way that attributes a different costs to GPUs based on their performance and memory.
In the first column below, we provide values for RGU-years as well as their GPU-years equivalents as estimates (in brackets). Ex: P100-12GB is 1 RGU. A100-40GB is 4.0 RGU.

(shared mega-allocation) (your supervisor’s default allocation) unrestricted
rrg-bengio-ad_gpu rrg-bengio-ad_cpu def-yourprof-gpu = def-yourprof-cpu GPU types internet? Wandb? Comet?
narval | 440 (~110) 580 3 GPUs 195 cores A100 no hitpproxy (limited) ~ httpproxy
beluga | 250 (~111) 125 4 GPUs 63 cores V100 no httpproxy (limited) httpproxy
cedar | 305 (~118) 125 3 GPUs 71 cores P100, V100 yes yes yes
RGUs (~GPUs) CPU cores Columns with rrg-bengio values are guaranteed resources for the year. However, the def-yourprof values are estimates of the

best effort to share excess resources available across Canada, and they could be off by a factor of 2 in reality.

1. Contrary to the Mila cluster, DRAC allocations have a single fair
share value for all users under the account. Jobs that are the easiest

DRAC compute nodes have similar roles as the Mila cluster for $SHOME, $SCRATCH and $SLURM TMPDIR.
See also $HOME/projects/<account>/<your_ username>. Use diskusage_report to see usage.

to run will run first, no matter to whom they belong.
This might not feel fair. IDT does not control this. DRAC does.

Don’t be a bad actor by submitting 1k small jobs because you will
end up monopolizing the clusters to the detriment of everyone.
This is the price for DRAC clusters having preemption disabled.

If your jobs are queued and never run, try to make them more

appealing to the scheduler by asking for optimal resources.

2. You have access to “default accounts” that starts with a “def-*.
These are shared between members of your research group instead
of the whole Mila. This resources are underused. Free CPUs/GPUs!

3. The shared storage on DRAC is particular because we run out of
inodes (i.e. number of files) faster than the actual storage space.

4. IDT does not admin rights on DRAC clusters.

jobs that the scheduler likes

time bins <=3h <=12h <=24h <=72h <=168h

GPU:CPU:RAM ratios
Beluga favor10 :46G x4
Narval 1:12:123G x4

Cedar 1:8:46G x4 (V100 32GB)
1:6:31G x4 (P100 12GB)

1:6:62G x4 (P100 16GB)

DRAC clusters use a different method to queue jobs. You cannot specify a --partition.
Jobs fall in “bins” based on time and resources requested. Ask for things that are easy to schedule,
the scheduler will be much nicer to you. If you break your 12h job into 4 chunks of 3h (with
checkpointing), you will get resources more easily. If you ask for 13h, you will be put into the <=24h
bin, which is not advantageous to you.

If you ask for certain ratios of GPU:CPU:RAM when submitting jobs, the scheduler will also favor you.

