Mila compute
cheat sheet

by IDT team
getting help

- search in docs.mila.quebec

- search for specific strings (or error messages) on the Mila slack

- visit #mila-cluster and #compute-canada (for DRAC)

- visit specific tool channels such as #pytorch and #jax

- go to the IDT office hours (Tuesday 3PM-5PM, Wednesday 2PM-4PM)
by just walking into the IDT lab (room A.17) and saying hi

- open an IT support ticket by emailing it-support@mila.quebec

- contact DRAC support at support@tech.alliancecan.ca

milatools

Quick way to setup SSH to Mila cluster
pip install -U milatools; mila init

Open VSCode connected to an interactive session on compute node
mila code /path/work --alloc [salloc arguments]

Milatools can also connect directly to a DRAC cluster (e.g. rorqual)
mila code /path/work --cluster=rorqual --alloc
--account=def-bengioy [other salloc arguments]

Inside VSCode you can also open a remote SSH to mila-cpu to
automatically create an interactive session to a CPU node (configured by
mila init). You can also ssh mila-cpu from a terminal.

Never run a program that takes more than a few seconds on a login

node. Do not edit files remotely with VSCode directly on login nodes.

modules

module avail Displays all the available modules

Loads <module>

module spider <module> Shows details about <module>
module load python/3.10 Load python 3.10 to use it

Allows Wandb and Comet on DRAC

DRAC clusters (including PAICE) tend to have the same modules, which
differ a bit from those on the Mila cluster.

Slurm commands

salloc --gres=gpu:l -c 2 --mem=12000
Get an interactive job with one GPU, 2 CPUs and 12000 MB RAM
srun --gres=gpu:l -c 2 --mem=12000 my experiment.sh
Same interactive job as salloc but runs a specific command
sbatch
Start a batch job (same options as salloc)
sattach --pty <jobid>.0
Re-attach a dropped interactive job
sinfo
Status of all nodes
savail
List available gpu (Mila only)
partition-stats [-v]
Similar functionality to savail (DRAC only)
scancel <jobid>
Cancel a job
squeue -u $USER
Summary status of all YOUR active jobs
squeue -j <jobid>
Summary status of a specific job
squeue -0 jobid,name,username,partition,state,timeused,nodelist,gres,tres
Status of all jobs including requested resources
(see the SLURM squeue doc for all output options)
scontrol show job <jobid>
Detailed status of a running job
sacct -j <job_id> -o Nodelist
Get the node where a finished job ran
sacct -u $USER -S <start_time> -E <stop_time>
Find info about old jobs
sacct -oJobID,JobName,User,Partition,Node, State
List of current and recent jobs

module load <module>

module load httpproxy

(NB: Many of those modules are outdated.)

Remember that every map is a simplification of reality. PREPARED ON
This is a cheat sheet for Mila students using Slurm, 27
not a full tutorial, and also not a Linux/Git/PyTorch guide. BEST BEFORE
See docs.mila.quebec/Cheatsheet.html for pdf, 3-04-01
along with errata. Anticipate one update per year.

The complete up-to-date documentation at docs.mila.quebec.

sbatch / salloc commands

-n, --ntasks=<number> Number of task in your script, usually =1
-c, —--cpus-per-task=<ncpus> Number of cores for each task
-t, —-time=<time> Time requested for your job
—-mem=<size[units]> Memory requested for all your tasks
Select generic resources such as GPUs:
-—-gres=gpu:GPU_MODEL

—--gres=<list>

-p, --partition=<name> Partition for resource sharing (Mila cluster only)
—-account=<name> DRAC allocation for resources (DRAC only)
-x, —--exclude=<nodes> Exclude certain nodes from job submission

sbatch script example

#!/bin/bash

#SBATCH --ntasks=1 # Default 1 task, optional
#SBATCH --partition=unkillable # Ask for unkillable job
#SBATCH --cpus-per-task=2 # Ask for 2 CPUs

#SBATCH --gres=gpu:l # Ask for 1 GPU

#SBATCH --mem=10G # Ask for 10 GB of RAM
#SBATCH --time=3:00:00 # The job will run for 3 hours
#SBATCH -o /network/scratch/<u>/<username>/slurm-%j.out

Load the required modules

module --quiet load anaconda/3

Load your environment

conda activate "<env_name>"

Copy your dataset on the compute node

cp /network/datasets/<dataset> $SLURM TMPDIR

Launch your job, tell it to save the model in $SLURM_ TMPDIR
and look for the dataset into $SLURM TMPDIR

python main.py --path $SLURM TMPDIR --data path $SLURM TMPDIR
Copy whatever you want to save on $SCRATCH

cp $SLURM TMPDIR/<to_save> /network/scratch/<u>/<username>/

multi-GPU, multi-node 1node with 1GPU

#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4

#SBATCH --ntasks-per-node=1
#SBATCH --mem=16G

#SBATCH --time=00:15:00

2 nodes with 4 GPUs each

#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4

#SBATCH --ntasks-per-node=4
#SBATCH --nodes=2

#SBATCH --mem=16G

#SBATCH --time=00:15:00

See docs.mila.quebec/examples/
distributed/index.html for
minimalist standalone code.

1 node with 4 GPUs

#SBATCH --gpus-per-task=rtx8000:1
#SBATCH --cpus-per-task=4

#SBATCH --ntasks-per-node=4
#SBATCH --mem=16G

#SBATCH --time=00:15:00

If you have N parallel jobs that each require 1 GPU, don't try to schedule them in a multi-GPU
way. Submit many separate jobs, maybe use job arrays, or consider packing many
experiments in a single job with 1GPU.

checkpointing, profiling, scaling

To run large-scale experiments, you need to
- profile your code to make sure you properly use the GPUs allocated (i.e. “GPU Utilization”),
- use checkpoints properly to resume your experiments when they crash or get preempted,
- package your experiments correctly in Slurm jobs to make full use of powerful GPUs.

Easy ways to measure “GPU Utilization” include Wandb, nvidia-smi and the DRAC “portail”.
See also docs.mila.quebec/examples/good_practices/checkpointing/index.html for an
example of proper checkpointing. Avoid accumulating too many checkpoints files. They take a lot
of storage space.

A common issue at Mila is that junior researchers don't write proper checkpointing for their training
experiments. This leads to wasted resources when jobs are preempted after many hours and then
cannot resume properly. To avoid preemption, some researchers stick to "unkillable" partitions on
the Mila cluster, which severely limits their ability to run parallel experiments.

Research involves exploring and testing ideas that don’t necessarily work out in the end.
This is a good use of the cluster when done properly. Mila is a research institute.

docs.mila.quebec official docs
dashboard.server.mila.quebec node and GPU monitoring

datasets.server.mila.quebec datasets already shared on cluster

The Mila cluster is available for all students (co-)supervised by a Mila core prof and for Mila employees. Not MsPro students, nor students of non-core Mila profs. Exceptions exist.

GPU Mem| CPU mem Tmp SLURM optimal ratios partition name max resource usage max time note
Node Name Qty | N Model (GB) Cores (GB) (TB) features GPU:CPU:RAM
unkillable 6 CPUs, mem=32G, 1 GPU 2 days
GPU compute nodes unkillable-cpu 2 CPUs, mem=16G 2 days CPU-only jobs
cn-a[001-011] 11 8x RTX8000 48 40 384 3.6 tuing4dgb 1:5:48GB short-unkillable exactly 4 GPU (see note below) 3 hours (!) multi-GPU only
cn-b[001-005] 5 @ 8x V100 32 40 384 3.6 \voltanvink32gb 1:5:48GB main 8 CPUs, mem=48G, 2 GPUs 5 days
cn-c[001-040] 40 8x RTX8000 48 64 384 3 tuing4sgh 1:8:48GB main-cpu 8 CPUs, mem=64G 5 days CPU-only jobs
lon imi 7 days
cn-gl001-029] 29 4x A100 80 64 1024 7 awenvinkéb 1 :16: 256GB g no limit of resources .
long-cpu no limit of resources 7 days CPU-only jobs
cn-i001 1 4x A100 80 64 1024 3.6 ampere8gb 1:16:256GB
. Jobs on the Mila cluster are all preemptible, except for those in the
cn-j001 1 8x AB000 48 64 1024 3.6 amperedsgd 1:8:128GB unkillable partitions. This means that they can be terminated and requeued
]] ink 400b Can. automatically to allow higher-priority jobs to run (based on partition preemption
cnk[001-004] 4 | 4x] A100 <Y w8 | Bl el || el 1:12:128GB order unkillable >main > long). There is a very limited number of jobs that
cn-[[001-091] 92 | 4x L40S 48 48 1024 7 lovelace,48gb 1:12:256GB can run in unkillable partitions.
cn-n[001-002] 2 = 8x H100 80 192 2048 35 hoppernvink8ogb | 1:24:256GB The short-unkillable partition is a weird creature. It is designed to run jobs
with exactly 4 GPUs (only A100L, L40S and H100) uninterrupted. One possible
DGX Systems use for that is debug jobs on the Mila cluster with 4x H100 to later run on the
cn-d[001-002] 2 | 8x A100 40 128 1024 | 14 | amperenvinkdgx40gb 1 : 16 : 32GB tamia cluster.
cn-d[003-004] 2 8x A100 80 128 2048 28 amperenvinkdgx80gb 1 : 16 : 64GB path storagefinodes = speed backup? mounted
cn-e[002-003] 2 8x V100 32 40 512 7 votta,nviinkdgx32gb 4 : 5 : 16GB $HOME 100GB / 1M low yes all nodes
CPU compute nodes $SCRATCH 5TB / infty high no all nodes
SLURM TMPDIR = i no cn-*
cn-f{001-004] 4 - - - 32 256 10 rome 0:1:8GB y - highest
/network/projects varies medium no all nodes
. o - |- - i oq
cn-h[001-004] 4 64 768 7 | mian 0:1:12GB /network/datasets rgad-only high no all nodes
cn-m[001-004] 4 = - @ - o 96 1024 7 | sapphire 0:1:10GB /network/weights read-only high no allnodes
in-—*
As a reference for orders of magnitude, the Mila cluster has 1020 GPUs in total, accessible by AR CHIE 500GB low no togin

~700 researchers, with yields 6141 RGUs if we use DRAC'’s definition of Reference GPU Units. ~ Use disk-quota to see your current usage of storage (SHOME and $SCRATCH).

docs.alliancecan.ca/wiki

(shared mega-allocation) (your supervisor’s default allocation) unrestricted
rrg-bengio-ad_gpu | rrg-bengio-ad_cpu def-yourprof-gpu = def-yourprof-cpu GPU types internet? Wandb? Comet?
rorqual | 1500 RGus 873 2 ? 4x H100-80GB no hitpproxy (limited) ~ httpproxy
fir 2000 RGUs 193 ? ? 4x H100-80GB = unknown yet ? ?
nibi | 1000 rcus 0 2 ? 8x H100-80GB no hitpproxy (limited) httpproxy
These will become operational over the course of Summer 2025. Use beluga, narval and cedar in the meantime, assuming they are still online.
unrestricted
GPU devices RGU equivalent CPU-only cores GPU types internet? Wandb? Comet?
i (tert+tier2) tamia 143 1738 435 4x H100-80GB no httpproxy (limited) httpproxy
% (ier3) kKillarney 75 794 0 L40S, H100 yes (for now) 2 2
0 (tier 3) vulcan 82 850 0 L40S no httpproxy (limited) httpproxy

Values listed in this table represent 85% of Tamia (i.e. tier1+tier2), 10% of Killarney and 10% of Vulcan (both tier3 for Mila profs).

jobs that the scheduler likes

DRAC (Digital Research Alliance of Canada, formely known as
Compute Canada) offers access to compute clusters to all

researchers in Canada. Any prof with an account on DRAC can add time bins <=3h <=12h <=24h <=72h <=168h
(“sponsor”) whoever they want on their “default” allocation, but they

will usually add their own students. Additionally, all students .

supervised by a Mila core prof and all Mila employees can be GPU:CPU:RAM ratios

added to a “mega allocation” under Yoshua Bengio’s name. See Rorqual 1:12:250GB Nibi 1:14:250GB

https://docs.mila.quebec/Extra_compute.html#account-creation. Fir 1:12:250GB Tamia 1:12: 124GB (full node only, <=24h)

DRAC uses a concept of “Reference GPU Unit” (RGU) to measure
allocated GPUs in a way that attributes a different costs to GPUs
based on their performance and memory. For example, P100-12GB is
1 RGU. A100-40GB is 4.0 RGUs. H100-SXM5-80GB is 12.17 RGUs.

DRAC clusters use a different method to queue jobs. You cannot specify a --partition.
Jobs fall in “bins” based on time and resources requested. Ask for things that are easy to schedule,
the scheduler will be much nicer to you. If you break your 12h job into 4 chunks of 3h (with
checkpointing), you will get resources more easily. If you ask for 13h, you will be put into the <=24h
bin, which is not advantageous to you.

If you ask for certain ratios of GPU:CPU:RAM when submitting jobs, the scheduler will also favor you.

PAICE clusters are part of DRAC, but they are built for CIFAR Al
Chairs. There are certain access tiers based on the status of your
supervisor and geographic location. Mila researchers will generally
qualify for Tier 1 or Tier 2 access to Tamia. Killarney was build for
Vector Institute and Vulcan is for AMII. Most Mila researchers will
qualify for Tier 3 access on Killarney and Vulcan.

DRAC compute nodes have similar roles as the Mila cluster for SHOME, $SCRATCH and $SLURM_TMPDIR.
See also $HOME/projects/<account>/<your username>. Use diskusage report to see usage.

