1. Single GPU Job
Prerequisites Make sure to read the following sections of the documentation before using this example:
The full source code for this example is available on the mila-docs GitHub repository.
job.sh
#!/bin/bash
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=4
#SBATCH --mem=16G
#SBATCH --time=00:15:00
set -e # exit on error.
echo "Date: $(date)"
echo "Hostname: $(hostname)"
# Stage dataset into $SLURM_TMPDIR
mkdir -p $SLURM_TMPDIR/data
cp /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/
# General-purpose alternatives combining copy and unpack:
# unzip /network/datasets/some/file.zip -d $SLURM_TMPDIR/data/
# tar -xf /network/datasets/some/file.tar -C $SLURM_TMPDIR/data/
# Execute Python script
# Use the `--offline` option of `uv run` on clusters without internet access on compute nodes.
# Using the `--locked` option can help make your experiments easier to reproduce (it forces
# your uv.lock file to be up to date with the dependencies declared in pyproject.toml).
uv run python main.py
pyproject.toml
[project]
name = "single-gpu-example"
version = "0.1.0"
description = "Add your description here"
readme = "README.rst"
requires-python = ">=3.12"
dependencies = [
"numpy>=2.3.1",
"rich>=14.0.0",
"torch>=2.7.1",
"torchvision>=0.22.1",
"tqdm>=4.67.1",
]
main.py
"""Single-GPU training example."""
import argparse
import logging
import os
from pathlib import Path
import sys
import rich.logging
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
from tqdm import tqdm
def main():
# Use an argument parser so we can pass hyperparameters from the command line.
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--learning-rate", type=float, default=5e-4)
parser.add_argument("--weight-decay", type=float, default=1e-4)
parser.add_argument("--batch-size", type=int, default=128)
args = parser.parse_args()
epochs: int = args.epochs
learning_rate: float = args.learning_rate
weight_decay: float = args.weight_decay
batch_size: int = args.batch_size
# Check that the GPU is available
assert torch.cuda.is_available() and torch.cuda.device_count() > 0
device = torch.device("cuda", 0)
# Setup logging (optional, but much better than using print statements)
# Uses the `rich` package to make logs pretty.
logging.basicConfig(
level=logging.INFO,
format="%(message)s",
handlers=[
rich.logging.RichHandler(
markup=True,
console=rich.console.Console(
# Allower wider log lines in sbatch output files than on the terminal.
width=120 if not sys.stdout.isatty() else None
),
)
],
)
logger = logging.getLogger(__name__)
# Create a model and move it to the GPU.
model = resnet18(num_classes=10)
model.to(device=device)
optimizer = torch.optim.AdamW(
model.parameters(), lr=learning_rate, weight_decay=weight_decay
)
# Setup CIFAR10
num_workers = get_num_workers()
dataset_path = Path(os.environ.get("SLURM_TMPDIR", ".")) / "data"
train_dataset, valid_dataset, test_dataset = make_datasets(str(dataset_path))
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
)
valid_dataloader = DataLoader(
valid_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
)
test_dataloader = DataLoader( # NOTE: Not used in this example.
test_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
)
# Checkout the "checkpointing and preemption" example for more info!
logger.debug("Starting training from scratch.")
for epoch in range(epochs):
logger.debug(f"Starting epoch {epoch}/{epochs}")
# Set the model in training mode (important for e.g. BatchNorm and Dropout layers)
model.train()
# NOTE: using a progress bar from tqdm because it's nicer than using `print`.
progress_bar = tqdm(
total=len(train_dataloader),
desc=f"Train epoch {epoch}",
disable=not sys.stdout.isatty(), # Disable progress bar in non-interactive environments.
)
# Training loop
for batch in train_dataloader:
# Move the batch to the GPU before we pass it to the model
batch = tuple(item.to(device) for item in batch)
x, y = batch
# Forward pass
logits: Tensor = model(x)
loss = F.cross_entropy(logits, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Calculate some metrics:
n_correct_predictions = logits.detach().argmax(-1).eq(y).sum()
n_samples = y.shape[0]
accuracy = n_correct_predictions / n_samples
logger.debug(f"Accuracy: {accuracy.item():.2%}")
logger.debug(f"Average Loss: {loss.item()}")
# Advance the progress bar one step and update the progress bar text.
progress_bar.update(1)
progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item())
progress_bar.close()
val_loss, val_accuracy = validation_loop(model, valid_dataloader, device)
logger.info(
f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}"
)
print("Done!")
@torch.no_grad()
def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device):
model.eval()
total_loss = 0.0
n_samples = 0
correct_predictions = 0
for batch in dataloader:
batch = tuple(item.to(device) for item in batch)
x, y = batch
logits: Tensor = model(x)
loss = F.cross_entropy(logits, y)
batch_n_samples = x.shape[0]
batch_correct_predictions = logits.argmax(-1).eq(y).sum()
total_loss += loss.item()
n_samples += batch_n_samples
correct_predictions += batch_correct_predictions
accuracy = correct_predictions / n_samples
return total_loss, accuracy
def make_datasets(
dataset_path: str,
val_split: float = 0.1,
val_split_seed: int = 42,
):
"""Returns the training, validation, and test splits for CIFAR10.
NOTE: We don't use image transforms here for simplicity.
Having different transformations for train and validation would complicate things a bit.
Later examples will show how to do the train/val/test split properly when using transforms.
"""
train_dataset = CIFAR10(
root=dataset_path, transform=transforms.ToTensor(), download=True, train=True
)
test_dataset = CIFAR10(
root=dataset_path, transform=transforms.ToTensor(), download=True, train=False
)
# Split the training dataset into a training and validation set.
n_samples = len(train_dataset)
n_valid = int(val_split * n_samples)
n_train = n_samples - n_valid
train_dataset, valid_dataset = random_split(
train_dataset, (n_train, n_valid), torch.Generator().manual_seed(val_split_seed)
)
return train_dataset, valid_dataset, test_dataset
def get_num_workers() -> int:
"""Gets the optimal number of DatLoader workers to use in the current job."""
if "SLURM_CPUS_PER_TASK" in os.environ:
return int(os.environ["SLURM_CPUS_PER_TASK"])
if hasattr(os, "sched_getaffinity"):
return len(os.sched_getaffinity(0))
return torch.multiprocessing.cpu_count()
if __name__ == "__main__":
main()
Running this example
$ sbatch job.sh