Launch many tasks on the same GPU

If you want to use a powerful GPU efficiently, you can run many tasks on same GPU using a combination of sbatch arguments. In your sbatch script:

  • Specify only 1 GPU to use, e.g. with --gres=gpu:rtx8000:1

  • Specify number of tasks to run on the selected GPU with --ntasks-per-gpu=N

  • Launch your job using srun main.py instead of just main.py.

srun will then launch main.py script N times. Each task will receive specific environment variables, such as SLURM_PROCID, which you can then use to parameterize the script execution.

Prerequisites Make sure to read the following sections of the documentation before using this example:

The full source code for this example is available on the mila-docs GitHub repository.

job.sh

 # distributed/single_gpu/job.sh -> good_practices/many_tasks_per_gpu/job.sh
 #!/bin/bash
-#SBATCH --ntasks=1
-#SBATCH --ntasks-per-node=1
+#SBATCH --ntasks=2
+#SBATCH --ntasks-per-gpu=2
 #SBATCH --cpus-per-task=4
-#SBATCH --gpus-per-task=l40s:1
+#SBATCH --gres=gpu:l40s:1
 #SBATCH --mem-per-gpu=16G
 #SBATCH --time=00:15:00
 
 # Exit on error
 set -e
 
 # Echo time and hostname into log
 echo "Date:     $(date)"
 echo "Hostname: $(hostname)"
 
 # To make your code as much reproducible as possible with
 # `torch.use_deterministic_algorithms(True)`, uncomment the following block:
 ## === Reproducibility ===
 ## Be warned that this can make your code slower. See
 ## https://pytorch.org/docs/stable/notes/randomness.html#cublas-and-cudnn-deterministic-operations
 ## for more details.
 # export CUBLAS_WORKSPACE_CONFIG=:4096:8
 ## === Reproducibility (END) ===
 
 # Stage dataset into $SLURM_TMPDIR
 mkdir -p $SLURM_TMPDIR/data
 cp /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/
 # General-purpose alternatives combining copy and unpack:
 #     unzip   /network/datasets/some/file.zip -d $SLURM_TMPDIR/data/
 #     tar -xf /network/datasets/some/file.tar -C $SLURM_TMPDIR/data/
 
 # Execute Python script
 # Use the `--offline` option of `uv run` on clusters without internet access on compute nodes.
 # Using the `--locked` option can help make your experiments easier to reproduce (it forces
 # your uv.lock file to be up to date with the dependencies declared in pyproject.toml).
 srun uv run python main.py

main.py

 # distributed/single_gpu/main.py -> good_practices/many_tasks_per_gpu/main.py
-"""Single-GPU training example."""
+"""Many tasks per GPU (job packing) example."""
 
 import argparse
 import logging
 import os
 import random
 import sys
 from pathlib import Path
 
 import numpy as np
 import rich.logging
 import torch
 from torch import Tensor, nn
 from torch.nn import functional as F
 from torch.utils.data import DataLoader, random_split
 from torchvision import transforms
 from torchvision.datasets import CIFAR10
 from torchvision.models import resnet18
 from tqdm import tqdm
 
 
 # To make your code as much reproducible as possible, uncomment the following
 # block:
 ## === Reproducibility ===
 ## Be warned that this can make your code slower. See
 ## https://pytorch.org/docs/stable/notes/randomness.html#cublas-and-cudnn-deterministic-operations
 ## for more details.
 # torch.use_deterministic_algorithms(True)
 ## === Reproducibility (END) ===
 
 
 def main():
     # Use an argument parser so we can pass hyperparameters from the command line.
     parser = argparse.ArgumentParser(description=__doc__)
     parser.add_argument("--epochs", type=int, default=10)
     parser.add_argument("--learning-rate", type=float, default=5e-4)
     parser.add_argument("--weight-decay", type=float, default=1e-4)
     parser.add_argument("--batch-size", type=int, default=128)
-    parser.add_argument("--seed", type=int, default=42)
+    # Get SLURM_PROCID and use it as a random seed for the script.
+    # This makes it so each task within a job uses a different initialization with the same
+    # hyper-parameters.
+    parser.add_argument(
+        "--seed",
+        type=int,
+        default=int(os.environ.get("SLURM_PROCID", 0)),
+        help="Random seed used for network initialization and the training loop.",
+    )
     args = parser.parse_args()
 
     epochs: int = args.epochs
     learning_rate: float = args.learning_rate
     weight_decay: float = args.weight_decay
     batch_size: int = args.batch_size
     seed: int = args.seed
 
     # Seed the random number generators as early as possible for reproducibility
     random.seed(seed)
     np.random.seed(seed)
     torch.random.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
 
     # Check that the GPU is available
     assert torch.cuda.is_available() and torch.cuda.device_count() > 0
     device = torch.device("cuda", 0)
 
     # Setup logging (optional, but much better than using print statements)
     # Uses the `rich` package to make logs pretty.
     logging.basicConfig(
         level=logging.INFO,
         format="%(message)s",
         handlers=[
             rich.logging.RichHandler(
                 markup=True,
                 console=rich.console.Console(
                     # Allower wider log lines in sbatch output files than on the terminal.
                     width=120 if not sys.stdout.isatty() else None
                 ),
             )
         ],
     )
 
     logger = logging.getLogger(__name__)
 
     # Create a model and move it to the GPU.
     model = resnet18(num_classes=10)
     model.to(device=device)
 
     optimizer = torch.optim.AdamW(
         model.parameters(), lr=learning_rate, weight_decay=weight_decay
     )
 
     # Setup CIFAR10
     num_workers = get_num_workers()
     dataset_path = Path(os.environ.get("SLURM_TMPDIR", ".")) / "data"
     train_dataset, valid_dataset, test_dataset = make_datasets(str(dataset_path))
     train_dataloader = DataLoader(
         train_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=True,
     )
     valid_dataloader = DataLoader(
         valid_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,
     )
     _test_dataloader = DataLoader(  # NOTE: Not used in this example.
         test_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,
     )
 
     # Checkout the "checkpointing and preemption" example for more info!
     logger.debug("Starting training from scratch.")
 
     for epoch in range(epochs):
         logger.debug(f"Starting epoch {epoch}/{epochs}")
 
         # Set the model in training mode (important for e.g. BatchNorm and Dropout layers)
         model.train()
 
         # NOTE: using a progress bar from tqdm because it's nicer than using `print`.
         progress_bar = tqdm(
             total=len(train_dataloader),
             desc=f"Train epoch {epoch}",
             disable=not sys.stdout.isatty(),  # Disable progress bar in non-interactive environments.
         )
 
         # Training loop
         for batch in train_dataloader:
             # Move the batch to the GPU before we pass it to the model
             batch = tuple(item.to(device) for item in batch)
             x, y = batch
 
             # Forward pass
             logits: Tensor = model(x)
 
             loss = F.cross_entropy(logits, y)
 
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
 
             # Calculate some metrics:
             n_correct_predictions = logits.detach().argmax(-1).eq(y).sum()
             n_samples = y.shape[0]
             accuracy = n_correct_predictions / n_samples
 
             logger.debug(f"Accuracy: {accuracy.item():.2%}")
             logger.debug(f"Average Loss: {loss.item()}")
 
             # Advance the progress bar one step and update the progress bar text.
             progress_bar.update(1)
             progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item())
         progress_bar.close()
 
         val_loss, val_accuracy = validation_loop(model, valid_dataloader, device)
         logger.info(
             f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}"
         )
 
     print("Done!")
 
 
 @torch.no_grad()
 def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device):
     model.eval()
 
     total_loss = 0.0
     n_samples = 0
     correct_predictions = 0
 
     for batch in dataloader:
         batch = tuple(item.to(device) for item in batch)
         x, y = batch
 
         logits: Tensor = model(x)
         loss = F.cross_entropy(logits, y)
 
         batch_n_samples = x.shape[0]
         batch_correct_predictions = logits.argmax(-1).eq(y).sum()
 
         total_loss += loss.item()
         n_samples += batch_n_samples
         correct_predictions += batch_correct_predictions
 
     accuracy = correct_predictions / n_samples
     return total_loss, accuracy
 
 
 def make_datasets(
     dataset_path: str,
     val_split: float = 0.1,
     val_split_seed: int = 42,
 ):
     """Returns the training, validation, and test splits for CIFAR10.
 
     NOTE: We don't use image transforms here for simplicity.
     Having different transformations for train and validation would complicate things a bit.
     Later examples will show how to do the train/val/test split properly when using transforms.
     """
     train_dataset = CIFAR10(
         root=dataset_path, transform=transforms.ToTensor(), download=True, train=True
     )
     test_dataset = CIFAR10(
         root=dataset_path, transform=transforms.ToTensor(), download=True, train=False
     )
     # Split the training dataset into a training and validation set.
     n_samples = len(train_dataset)
     n_valid = int(val_split * n_samples)
     n_train = n_samples - n_valid
     train_dataset, valid_dataset = random_split(
         train_dataset, (n_train, n_valid), torch.Generator().manual_seed(val_split_seed)
     )
     return train_dataset, valid_dataset, test_dataset
 
 
 def get_num_workers() -> int:
     """Gets the optimal number of DatLoader workers to use in the current job."""
     if "SLURM_CPUS_PER_TASK" in os.environ:
         return int(os.environ["SLURM_CPUS_PER_TASK"])
     if hasattr(os, "sched_getaffinity"):
         return len(os.sched_getaffinity(0))
     return torch.multiprocessing.cpu_count()
 
 
 if __name__ == "__main__":
     main()

Running this example

You can launch this example with sbatch:

$ sbatch job.sh